Raphael Schor

2 results

Transforming Industries with MongoDB and AI: Manufacturing and Motion

This is the first in a six-part series focusing on critical AI use cases across several industries . The series covers the manufacturing and motion, financial services, retail, telecommunications and media, insurance, and healthcare industries. The integration of artificial intelligence (AI) within the manufacturing and automotive industries has transformed the conventional value chain, presenting a spectrum of opportunities. Leveraging Industrial IoT, companies now collect extensive data from assets, paving the way for analytical insights and unlocking novel AI use cases, including enhanced inventory management and predictive maintenance. Inventory management Efficient supply chains can control operational costs and ensure on-time delivery to their customers. Inventory optimization and management is a key component in achieving these goals. Managing and optimizing inventory levels, planning for fluctuations in demand, and of course, cutting costs are all imperative goals. However, efficient inventory management for manufacturers presents complex data challenges too, primarily in forecasting demand accurately and optimizing stock levels. This is where AI can help. Figure 1: Gen AI-enabled demand forecasting with MongoDB Atlas AI algorithms can be used to analyze complex datasets to predict future demand for products or parts. Improvement in demand forecasting accuracy is crucial for maintaining optimal inventory levels. AI-based time series forecasting can assist in adapting to rapid changes in customer demand. Once the demand is known, AI can play a pivotal role in stock optimization. By analyzing historical sales data and market trends, manufacturers can determine the most efficient stock levels and even reduce human error. On top of all this existing potential, generative AI can help with generating synthetic inventory data and seasonally adjusted demand patterns. It can also help with creating scenarios to simulate supply chain disruptions. MongoDB Atlas makes this process simple. At the warehouse, the inventory can be scanned using a mobile device. This data is persisted in Atlas Device SDK and synced with Atlas using Device Sync, which is used by MongoDB customers like Grainger . Atlas Device Sync provides an offline-first seamless mobile experience for inventory tracking, making sure that inventory data is always accurate in Atlas. Once data is in Atlas, it can serve as the central repository for all inventory-related data. This repository becomes the source of data for inventory management AI applications, eliminating data silos and improving visibility into overall inventory levels and movements. Using Atlas Vector Search and generative AI, manufacturers can easily categorize products based on their seasonal attributes, cluster products with similar seasonal demand patterns, and provide context to the foundation model to improve the accuracy of synthetic inventory data generation. Predictive maintenance The most basic approach to maintenance today is reactive — assets are deliberately allowed to operate until failures actually occur. The assets are maintained as needed, making it challenging to anticipate repairs. Preventive maintenance, however, allows systems or components to be replaced based on a conservative schedule to prevent commonly occurring failures — although predictive maintenance is expensive to implement due to frequent replacement of parts before end-of-life. Figure 2: Audio-based anomaly detection with MongoDB Atlas. Scan the QR code to try it out yourself. AI offers a chance to efficiently implement predictive maintenance using data collected from IoT sensors on machinery trained to detect anomalies. ML/AI algorithms like regression models or decision trees are trained on the preprocessed data, deployed on-site for inference, and continuously analyzed sensor data. When anomalies are detected, alerts are generated to notify maintenance personnel, enabling proactive planning and execution of maintenance actions to minimize downtime and optimize equipment reliability and performance. A retrieval-augmented generation (RAG) architecture can be deployed to generate or curate the data preprocessor removing the need for specialized data science knowledge. The domain expert can provide the right prompts for the large language model. Once the maintenance alert is generated by an AI model, generative AI can come in again to suggest a repair strategy, taking spare parts inventory data, maintenance budget, and personal availability into consideration. Finally, the repair manuals can be vectorized and used to power a chatbot application that guides the technician in performing the actual repair. MongoDB documents are inherently flexible while allowing data governance when required. Since machine health prediction models require not just sensor data but also maintenance history and inventory data, the document model is a perfect fit to model such disparate data sources. During the maintenance and support process of a physical product, information such as product information and replacement parts documentation must be available and easily accessible to support staff. Full-text search capabilities provided by Atlas Search can be integrated with the support portal and help staff retrieve information from Atlas clusters with ease. Atlas Vector Search is a foundational element for effective and efficiently powered predictive maintenance models. Manufacturers can use MongoDB Atlas to explore ways of simplifying machine diagnostics. Audio files can be recorded from machines, which can then be vectorized and searched to retrieve similar cases. Once the cause is identified, they can use RAG to implement a chatbot interface that the technician can interact with and get context-aware, step-by-step guidance on how to perform the repair. Autonomous driving With the rise of connected vehicles, automotive manufacturers have been compelled to transform their business models into software-first organizations. The data generated by connected vehicles is used to create better driver assistance systems, paving the way for autonomous driving applications. However, it is challenging to create fully autonomous vehicles that can drive safer than humans. Some experts estimate that the technology to achieve level 5 autonomy is about 80% developed — but the remaining 20% will be extremely hard to achieve and will take a lot of time to perfect. Figure 3: MongoDB Atlas’s Role in Autonomous Driving AI-based image and object recognition in automotive applications face uncertainties, but manufacturers must utilize data from radar, LiDAR, cameras, and vehicle telemetry to improve AI model training. Modern vehicles act as data powerhouses, constantly gathering and processing information from onboard sensors and cameras, generating significant Big Data. Robust storage and analysis capabilities are essential to manage this data, while real-time analysis is crucial for making instantaneous decisions to ensure safe navigation. MongoDB can play a significant role in addressing these challenges. The document model is an excellent way to accommodate diverse data types such as sensor readings, telematics, maps, and model results. New fields to the documents can be added at run time, enabling the developers to easily add context to the raw telemetry data. MongoDB’s ability to handle large volumes of unstructured data makes it suitable for the constant influx of vehicle-generated information. Atlas Search provides a performant search engine to allow data scientists to iterate their perception AI models. Finally, Atlas Device Sync can be used to send configuration updates to the vehicle's advanced driving assistance system Other notable use cases AI plays a critical role in fulfilling the promise of Industry 4.0. Numerous other use cases of AI can be enabled by MongoDB Atlas, some of which include: Logistics Optimization: AI can help optimize routes resulting in reduced delays and enhanced efficiency in day-to-day delivery operations. Quality Control and Defect Detection: Computer or machine vision can be used to identify irregularities in the products as they are manufactured. This ensures that product standards are met with precision. Production Optimization: By analyzing time series data from sensors installed on production lines, waste can be identified and reduced, thereby improving throughput and efficiency. Smart After Sales Support: Manufacturers can utilize AI-driven chatbots and predictive analytics to offer proactive maintenance, troubleshooting, and personalized assistance to customers. Personalized Product Recommendations: AI can be used to analyze user behavior and preferences to deliver personalized product recommendations via a mobile or web app, enhancing customer satisfaction and driving sales. The integration of AI in manufacturing and automotive industries has revolutionized traditional processes, offering a plethora of opportunities for efficiency and innovation. With industrial IoT and advanced analytics, companies can now harness vast amounts of data to enhance inventory management and predictive maintenance. AI-driven demand forecasting ensures optimal stock levels, while predictive maintenance techniques minimize downtime and optimize equipment performance. Moreover, as automotive manufacturers work toward autonomous driving, AI-powered image recognition and real-time data analysis become paramount. MongoDB Atlas emerges as a pivotal solution, providing flexible document modeling and robust storage capabilities to handle the complexities of Industry 4.0. Beyond the manufacturing and automotive sectors, the potential of AI-enabled by MongoDB Atlas extends to logistics optimization, quality control, production efficiency, smart after-sales support, and personalized customer experiences, shaping the future of Industry 4.0 and beyond. Learn more about AI use cases for top industries in our new white paper, “ How Leading Industries are Transforming with AI and MongoDB Atlas .”

March 19, 2024

How MongoDB Enables Digital Twins in the Industrial Metaverse

The integration of MongoDB into the metaverse marks a pivotal moment for the manufacturing industry, unlocking innovative use cases across design and prototyping, training and simulation, and maintenance and repair. MongoDB's powerful capabilities — combined with Augmented Reality (AR) or Virtual Reality (VR) technologies — are reshaping how manufacturers approach these critical aspects of their operations, while also enabling the realization of innovative product features. But first: What is the metaverse, and why is it so important to manufacturers? We often use the term, "digital twin" to refer to a virtual replication of the physical world. It is commonly used for simulations and documentation. The metaverse goes one step further: Not only is it a virtual representation of a physical device or a complete factory, but the metaverse also reacts and changes in real time to reflect a physical object’s condition. The advent of the industrial metaverse over the past decade has given manufacturers an opportunity to embrace a new era of innovation, one that can enhance collaboration, visualization, and training. The industrial metaverse is also a virtual environment that allows geographically dispersed teams to work together in real-time. Overall, the metaverse transforms the way individuals and organizations interact to produce, purchase, sell, consume, educate, and work together. This paradigm shift is expected to accelerate innovation and affect everything from design to production across the manufacturing industry. Here are some of the ways the metaverse — powered by MongoDB — is having an impact on manufacturing. Design and prototyping Design and prototyping processes are at the core of manufacturing innovation. Within the metaverse, engineers and designers can collaborate seamlessly using VR, exploring virtual spaces to refine and iterate on product designs. MongoDB's flexible document-oriented structure ensures that complex design data, including 3D models and simulations, is efficiently stored and retrieved. This enables real-time collaboration, accelerating the design phase while maintaining the precision required for manufacturing excellence. Training and simulation Taking a digital twin and connecting it to physical assets enables training beyond traditional methods and provides immersive simulations in the metaverse that enhance skill development for manufacturing professionals. VR training, powered by MongoDB's capacity to manage diverse data types — such as time-series, key-values and events — enables realistic simulations of manufacturing environments. This approach allows workers to gain hands-on experience in a safe virtual space, preparing them for real-world challenges without affecting production cycles. Gamification is also one of the most effective ways to learn new things. MongoDB's scalability ensures that training data, including performance metrics and user feedback, is efficiently handled to continuously enlarge the training modules and the necessary resources for the ever-increasing amount of data. Maintenance and repair Maintenance and repair operations are streamlined through AR applications within the metaverse. The incorporation of AR and VR technologies into manufacturing processes amplifies the user experience, making interactions more intuitive and immersive. Technicians equipped with AR devices can access real-time information overlaid onto physical equipment, providing step-by-step guidance for maintenance and repairs. MongoDB's support for large volumes of diverse data types, including multimedia and spatial information, ensures a seamless integration of AR and VR content. This not only enhances the visual representation of data from the digital twin and the physical asset but also provides a comprehensive platform for managing the vast datasets generated during AR and VR interactions within the metaverse. Additionally, MongoDB's geospatial capabilities come into play, allowing manufacturers to manage and analyze location-based data for efficient maintenance scheduling and resource allocation. The result is reduced downtime through more efficient maintenance and improved overall operational efficiency. From the digital twin to metaverse with MongoDB The advantages of a metaverse for manufacturers are enormous, and according to Deloitte many executives are confident the industrial metaverse “ will transform research and development, design, and innovation, and enable new product strategies .” However, the realization is not easy for most companies. Challenges include managing system overload, handling vast amounts of data from physical assets, and creating accurate visualizations. The metaverse must also be easily adaptable to changes in the physical world, and new data from various sources must be continuously implemented seamlessly. Given these challenges, having a data platform that can contextualize all the data generated by various systems and then feed that to the metaverse is crucial. That is where MongoDB Atlas , the leading developer data platform, comes in, providing synchronization capabilities between physical and virtual worlds, enabling flexible data modeling, and providing access to the data via a unified query interface as seen in Figure 1. Figure 1: MongoDB connecting to a physical & virtual factory Generative AI with Atlas Vector Search With MongoDB Atlas, customers can combine three systems — database, search engine, and sync mechanisms — into one, delivering application search experiences for metaverse users 30% to 50% faster . Atlas powers use cases such as similarity search, recommendation engines, Q&A systems, dynamic personalization, and long-term memory for large language models (LLMs). Vector data is integrated with application data and seamlessly indexed for semantic queries, enabling customers to build easier and faster. MongoDB Atlas enables developers to store and access operational data and vector embeddings within a single unified platform. With Atlas Vector Search , users can generate information for maintenance, training, and all the other use cases from all possible information that is accessible. This information can come from text files such as Word, from PDFs, and even from pictures or sound streams from which an LLM then generates an accurate semantic answer. It’s no longer necessary to keep dozens of engineers busy, just creating useful manuals that are outdated at the moment a production line goes through first commissioning. Figure 2: Atlas Vector Search Transforming the manufacturing industry with MongoDB In the digital twin and metaverse-driven future of manufacturing, MongoDB emerges as a linchpin, enabling cost-effective virtual prototyping, enhancing simulation capabilities, and revolutionizing training processes. The marriage of MongoDB with AR and VR technologies creates a symbiotic relationship, fostering innovation and efficiency across design, training, and simulation. As the manufacturing industry continues its journey into the metaverse, the partnership between MongoDB and virtual technologies stands as a testament to the transformative power of digital integration in shaping the future of production. Learn more about how MongoDB is helping organizations innovate with the industrial metaverse by reading how we Build a Virtual Factory with MongoDB Atlas in 5 Simple Steps , how IIoT data can be integrated in 4 steps into MongoDB, or how MongoDB drives Innovations End-To-End in the whole Manufacturing Chain .

March 12, 2024